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Abstract:

The clinical efficacy of current antidepressant therapies is unsatisfactory; antidepressants induce a variety of unwanted effects, and,
moreover, their therapeutic mechanism is not clearly understood. Thus, a search for better and safer agents is continuously in prog-
ress. Recently, studies have demonstrated that zinc and magnesium possess antidepressant properties.
Zinc and magnesium exhibit antidepressant-like activity in a variety of tests and models in laboratory animals. They are active in
forced swim and tail suspension tests in mice and rats, and, furthermore, they enhance the activity of conventional antidepressants
(e.g., imipramine and citalopram). Zinc demonstrates activity in the olfactory bulbectomy, chronic mild and chronic unpredictable
stress models in rats, while magnesium is active in stress-induced depression-like behavior in mice. Clinical studies demonstrate that
the efficacy of pharmacotherapy is enhanced by supplementation with zinc and magnesium. The antidepressant mechanisms of zinc
and magnesium are discussed in the context of glutamate, brain-derived neurotrophic factor (BDNF) and glycogen synthase
kinase-3 (GSK-3) hypotheses.
All the available data indicate the importance of zinc and magnesium homeostasis in the psychopathology and therapy of affective
disorders.
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Zinc

Zinc is one of the most abundant trace elements in the
body. It is a key structural component of many pro-
teins and a co-factor of many enzymes that play an
important role in brain function [20]. Zinc is present
predominantly in the brain and is located in specific
regions, including the hippocampus, amygdala, and
cortex. The vast majority of brain zinc (95%) is bound
to zinc metalloproteins; the rest is found in presynap-
tic vesicles [103]. Neurons containing these vesicles
are termed zinc-enriched neurons (ZEN). In the cere-
bellum, these neurons are associated with � -amino-
butyric acid (GABA) neurotransmission [98, 108],
whereas, in the cortex, amygdala, and hippocampus,
the ZEN terminals are glutamatergic [19]. By inhibit-
ing both the GABA and glutamatergic receptors, zinc
seems to modulate neuronal excitability [20, 98], and
it is also thought to play an important role in synaptic
plasticity [47]. Recent data indicate that zinc can
function as a signaling molecule modulating protein
function [28, 43, 55, 56]. Dietary zinc deprivation in-
fluences zinc homeostasis in the brain and leads to be-
havioral disturbances, such as anorexia, dysphoria,
impaired learning and cognitive function [103], and
some neurological disorders [54, 103].

Zinc and depression

Experimental data

Experimental data have demonstrated the involve-
ment of zinc in the pathophysiology and treatment of
depression. Experiments performed on rats showed
that chronic treatment with citalopram significantly
increases the zinc level in blood serum [69]. Repeated
administration of citalopram or imipramine (IMI)
slightly increases the zinc level in the hippocampus
and decreases it in the cortex, cerebellum, and basal
forebrain, although the calculation of the ratio hippo-
campus/other brain regions zinc concentration dis-
played a significantly increased level of zinc in the
hippocampus after treatment with these drugs [69].
Using Timm’s histochemical method for zinc stain-
ing, two groups, Lamont et al. [46] and Vaidya et al.
[104], showed that repeated treatment with electro-
convulsive shock (ECS) induced hippocampal mossy
fiber sprouting, which might indicate an increase in
the vesicular zinc level in the hippocampus. This ef-

fect was not found after chronic antidepressant treat-
ment [46]. Our recent data show that repeated admini-
stration of zinc increases the pool of synaptic zinc in
the hippocampus [102], and this effect is similar to
that observed after chronic ECS treatment [104].

One of the roles of zinc in the central nervous system
is the modulation (inhibition) of the glutamate iono-
tropic N-methyl-D-aspartate (NMDA) receptor com-
plex [5]. Our study, which examined the effect of IMI
on the potency of zinc’s inhibition of [3H]MK-801
binding in mouse and rat brains, showed that chronic
treatment with IMI increases the potency of zinc to in-
hibit [3H]MK-801 binding in the mouse cortex but not
the hippocampus [101]. However, this treatment did
not influence the zinc affinity in rat tissue, which may
suggest the existence of a species-dependent effect of
IMI-induced mechanisms involving zinc sites on the
NMDA receptor. However, the differences that we
have observed in our study (increased inhibition of
[3H]MK-801 binding by zinc in the cortex but not in
the hippocampus) may be due to the existence of mul-
tiple forms of the NMDA-channel complex (region-
specific subunit composition and different physiologi-
cal and pharmacological properties) [5]. Recent data
indicated that zinc enhances the capability of detec-
tion of IMI-induced reduction in glycine potency at
NMDA receptor labeled with [3H]L-689,560, which
may further confirm the importance of zinc in the
mechanism of antidepressant treatment [11].

Most of the antidepressants, as well as ECS, induce
an increase in brain-derived neurotrophic factor
(BDNF) gene expression in the hippocampus. How-
ever, the elevated BDNF mRNA levels in the cortex
were observed only after treatment with ESC and
a few antidepressants [67]. Our data indicate that two
weeks of zinc treatment at a high dose (11.5 mg/kg) in-
creased the BDNF mRNA levels in the rat cortex [68]
but not in the hippocampus. However, one to five
weeks of treatment with zinc at a very low dose
(1.8 mg/kg) increases the BDNF mRNA levels in the
hippocampus [99]). Data collected by Franco et al.
[17] indicate that chronic zinc treatment produces an
increase in ERK phosphorylation and BDNF expres-
sion in the cerebral cortex in rats.

Recent data demonstrate that zinc exerts antide-
pressant-like effects in animal drug screening tests
and models of depression. Zinc showed antidepres-
sant-like activities in the forced swim test (FST) in
both mice and rats and in the tail suspension test in
mice [44, 45, 72, 90]. Moreover, doses of IMI and
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citalopram that were low and ineffective in the FST
were then administered together with low doses of
zinc and proved to be active in this test [90, 100]. Zinc
was also active in the olfactory bulbectomy (OB)
model of depression. Both acute and chronic admini-
stration of zinc reduced the number of trials needed
for learning passive avoidance and reduced the time
of walking and the number of rearings and peepings
in the bulbectomized rats [72]. Furthermore, recent
findings have demonstrated an antidepressant-like ac-
tivity of zinc in chronic unpredictable stress (CUS). It
was found that CUS decreases the footshock-induced
fighting behavior in rats and that various antidepres-
sants given repeatedly prevent this kind of behavioral
depression [74]. Similar to the effects of antidepressant
drugs, chronic zinc administration prevented the defi-
cit in fighting behavior in chronically stressed rats [7].
Additionally, zinc supplementation enhanced the ef-
fect of IMI in this behavioral model of depression [7].
Our recent data show that chronic treatment with zinc
was also active in the chronic mild stress (CMS) model
of depression in rats. Zinc reversed the CMS-induced
reduction in the consumption of sucrose [99] (Tab. 1).

All these findings strongly suggest that zinc could
also produce antidepressant activity in humans.

Human data

Several clinical and postmortem studies have indi-
cated the role of zinc in depression and the mecha-
nisms of action of antidepressant drugs. It was found
that depressed patients showed a significantly lower
serum zinc level than psychiatrically normal controls
[51, 61, 73]. Moreover, the serum zinc concentration
in patients with unipolar depression was negatively
correlated with the severity of this illness [51]. Al-
though the other study did not show any correlation
between these parameters, the authors speculated that
this lack of correlation might be due to the different
populations of patients (mostly treatment-resistant)
used in the study [53]. A recent preliminary study per-
formed in pregnant women indicated that a lower se-
rum zinc concentration may also accompany antepar-
tum and postpartum depressive symptoms [111]. Also
in this study, the serum zinc level was negatively cor-
related with the severity of the depressive symptoms.
Some studies, which found low zinc levels in de-
pressed patients, also reported an increase in the acti-
vation of markers of the immune system [51, 61]. It
was found, however, that cytokine production and acti-

vation of the immune system can induce the develop-
ment of clinical depression [2]. Thus, it is possible
that the lower serum zinc in depression may be secon-
dary to zinc sequestration by metallothionein, which
may be related to the increase in cytokine production
[50, 52].

Further support of the hypothesis that zinc concen-
tration might be a sensitive and specific marker of de-
pression comes from the findings that the lower serum
zinc level may be normalized after successful antide-
pressant therapy [53, 61, 94]. There are also some
preliminary data suggesting that zinc supplementation
may enhance antidepressant therapy in patients with
unipolar depression [70]. In this study, two groups of
patients were used: placebo-treated and those receiv-
ing zinc supplementation (Farmapol, Poland). All pa-
tients received standard antidepressant therapy. The
severity of depression was assessed by the Hamilton
Depression Rating Scale (HDRS) and Beck Depres-
sion Inventory (BDI). Antidepressants reduced HDRS
scores by the 2nd week of treatment in both groups
and the BDI scores at the 6th week in the zinc-treated
group. Zinc supplementation significantly reduced the
scores in both HDRS and BDI measures after 6 and
12-week supplementation when compared with the
placebo treatment [70]. These findings are the first
demonstration of the benefits of zinc-supplementation
in antidepressant therapy. Beyond this, our present
unpublished clinical data indicate the beneficial ef-
fects of zinc as an adjunct agent in the treatment of re-
sistant patients (Tab. 1).

Postmortem studies on suicide subjects and psychi-
atrically normal controls did not show any differences
in the zinc concentrations in the hippocampal or corti-
cal tissues of suicide victims; however, there was
a statistically significant decrease in the ability of zinc
to inhibit [3H]MK-801 binding to NMDA receptors in
the hippocampus, but not in the cortex of suicide vic-
tims, as compared to control subjects [71]. These data
represent the first demonstration that the alterations in
the interaction between zinc and NMDA may be in-
volved in the psychopathology underlying suicidal at-
tempts.

Zinc and immune system

Immunological studies have provided evidence that
major depression is accompanied by alterations in the
immune-inflammatory markers. It was found that de-
pressed patients with melancholia especially exhibit
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disruption in several aspects of immune functioning,
including an increased number of leukocytes, mono-
cytes, neutrophils, T-lymphocytes, neopterin and in-
creased in prostaglandin secretion [33, 38, 52]. More
recent studies have shown that depression is also as-
sociated with the activation of an acute phase re-
sponse with increased plasma concentration of posi-
tive acute phase proteins (e.g., haptoglobin, �1 and �2

globulin fractions) and reduced negative acute phase
proteins, such as albumin and transferrin [50, 52, 91].
In addition to these factors, it has been reported that
severe depressive illness is also accompanied by ele-
vated circulating cytokines (IL-�, IL-6) and inter-
feron-� (IFN-�) [49, 50] as well as by increased pro-
duction of the proinflammatory cytokines (IL-�, IL-6,
TNF-�) [2, 52]. One of the characteristic features of
an acute phase response is also a decreased serum
zinc level. It has been hypothesized that the lowered
serum zinc may be secondary to the sequestration of
this metal by the intracellular metal binding protein
metallothionein in the liver, which, in turn, may be
a result of an increased production of the proinflam-
matory cytokines [106]. The other findings indicate
a negative relationship between lower serum zinc and
the increased neopterin levels in depression [51].
Neopterin is a highly sensitive marker of the activa-
tion of cell-mediated immunity. A decrease in serum
neopterin suggests that the lower serum zinc levels
observed in major depression may be secondary to the
immune/inflammatory response in that illness. Sev-
eral reports have indicated that lower serum zinc con-
centrations in major depression are related to an in-
crease in other immuno/inflammatory markers, which
include increased CD4+/CD8+ T cell ratios and se-
rum neopterin and IL-6 serum levels [50]. Another
sign of inflammatory response system activation re-
ported in depression is a decrease in the serum con-
centration of albumin [52, 105], which is the major
plasma zinc binding protein [105]. A significant posi-
tive relationship between serum zinc and serum albu-
min was found in patients with a major depressive
disorder [52]. These data suggest that the lower zinc
concentration observed in depression may in part be
related to the decreased concentration of its “carrier”
protein, albumin [52]. Therefore, these findings raise
the hypothesis that alterations in serum zinc may be
the result of depression-related mechanisms rather
than their cause.

Mechanism of antidepressant activity

Glutamate receptors

Conventional antidepressants, which enhance the
monoamine systems, increase BDNF activity, which
may be connected to the reduction of NMDA iono-
tropic glutamate receptor function [76, 97]. Zinc is
a potent antagonist of the NMDA receptor complex
[30, 98]; thus, just as the organic NMDA receptor an-
tagonists, it may induce antidepressant actions via this
receptor complex. In fact, chronic treatment with zinc
enhances BDNF gene and protein expression and re-
duces the affinity of glycine to glycine/NMDA recep-
tors [68, 99, our unpublished data]. The antidepres-
sant-like action of zinc in the forced swim test is an-
tagonized by D-serine or NMDA co-treatment [80,
our unpublished data]. The specificity of that method
was earlier verified using selective NMDA receptor
ligands [85]. Furthermore, zinc is also an antagonist
of group I (mGlu1) and group II metabotropic gluta-
mate receptors [114] and an enhancer of the AMPA
ionotropic receptor [88], which are receptors involved
in the mechanism of antidepressant activity (Fig. 1).
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Fig. 1. Molecular mechanisms of antidepressant activity of zinc. Plus
signs represent excitatory/enhancing interactions; minus signs rep-
resent inhibitory interactions. Three main targets, BDNF, NMDA, and
GSK-3, of antidepressant treatment may also be involved in the anti-
depressant action of zinc. Zinc, like conventional antidepressants
(AD), may enhance the CREB/BDNF pathway via the serotonergic
system. Zinc may also affect BDNF by inhibiting the activity of GSK-3
by directly (or indirectly through group II mGluR) enhancing AMPA
receptors or by an unknown yet direct influence. In addition, zinc in-
hibits function of NMDA receptors by direct interaction or via group I
mGluR



Inhibition of GSK-3 enzyme

Another possible mechanism involved in zinc’s anti-
depressant activity is the antagonism of glycogen syn-
thase kinase-3 (GSK-3). GSK-3 is the enzyme that
deactivates glycogen synthase by phosphorylation.
However, glycogen synthase is not alone in being af-
fected by GSK-3. Other pathways, such as the insu-
lin/insulin-like growth factor (IGF-1) or neurotrophic
factor signaling (e.g., CREB), are influenced by GSK-3
[26]. Lithium [26], zinc [37], and magnesium [26, 93]
inhibit the phosphorylation activity of GSK-3, which
may be related to the therapeutic activity of these
ions. Antidepressant drugs, electroconvulsive shocks,
and some antipsychotics inhibit the GSK-3 phospho-
rylation activity, and, GSK-3 inhibitors exhibit anti-
depressant-like effects in the FST [25] (Fig. 1).

GSK-3 inhibits CREB activity and is negatively
regulated by BDNF, which remains under the control
of CREB. Thus, the inhibition of GSK-3 leads to en-
hanced CREB activity and enhanced activity of BDNF,
which, in turn, reduces GSK-3’s function (negative
loop). As such, zinc can also increase BDNF function
through the inhibition of GSK-3 (Fig. 1).

Involvement of serotonergic system

The involvement of the serotonergic system in the an-
tidepressant activity of zinc was observed. In the FST,
the synergistic effect of zinc was shown by “seroto-
nergic” (serotonin uptake inhibitors) but not by “nora-
drenergic” (noradrenaline uptake inhibitors) antide-
pressants (our unpublished data). Moreover, lesion of
the serotonergic system (induced by pCPA) counter-
acted antidepressant-like effects induced by this ion
(our unpublished data). Zinc differentially modulates
the serotonin uptake in vitro [22], and such complex
interaction of zinc with the serotonin transporter
in vivo may be responsible for the positive zinc inter-
action with serotonin uptake inhibitors in the FST
(Fig. 1).

Magnesium

Magnesium is a major biometal that plays a signifi-
cant role in a variety of physiological mechanisms.
Magnesium is the fourth (Ca > K > Na > Mg) most

abundant cation in living organisms and the second
(after potassium) most common intracellular cation [16].
A healthy adult human contains about 1000 mmol (24 g)
magnesium distributed in various organs and com-
partments. It is mainly distributed in bones (half of
the total magnesium in the body) and soft tissues:
muscles (27%) and heart and liver (19%) [13, 89].
Tissue magnesium (intracellular magnesium fraction)
is mainly bound to nucleic acids (RNA, DNA), ATP,
ADP, proteins, phospholipids, and citrate [65]. Ninety
percent of intracellular magnesium is bound to ribo-
somes or polynucleotides. Its physiological functions
include structural stabilization of proteins, nucleic ac-
ids, and cell membranes, which it does by general sur-
face binding [8]. Two to three percent of intracellular
magnesium is free, and this pool regulates the intra-
cellular magnesium homeostasis and cellular function
[65, 89].

About 1% of the body’s total magnesium is local-
ized extracellularly, mainly in blood (serum and red
blood cells), where it is present in three states:
protein-bound (19%), complexes to anions, such as
citrate, phosphate, and bicarbonate (14%), and ion-
ized (biologically active form, 67%) [1, 14]. The bal-
ance between cerebrospinal fluid (CSF) magnesium
concentration and plasma magnesium concentration is
regulated by the active transport between these two
compartments [62]. This mechanism leads to the sta-
bilization of the intracerebral magnesium concentra-
tions even in the case of magnesium depletion [64].

Magnesium is a co-factor of numerous enzymatic
reactions involving energy metabolism [27, 92]. It is
involved in transmembrane ion flux and the produc-
tion or utilization of adenylate cyclase [60]. Magne-
sium is also a potent antagonist of the NMDA recep-
tor complex [62]. The activation of the NMDA receptor
ion channel is blocked by Mg2+ in a voltage-depen-
dent manner [62]. In vitro, this blockade occurs at ex-
tracellular Mg2+ concentrations (less than 1 mM) that
are within the range of the magnesium level found in
CSF and plasma [62]. Lowering extracellular magne-
sium concentrations increases central hyperexcitability
due to the disinhibition of the NMDA receptor chan-
nels’ [59] magnesium levels, and the metabolism ho-
meostasis is regulated by various hormones, while the
magnesium deficiency causes alterations in the me-
tabolism, secretion, and action of several hormones
[57, 58]. Magnesium is necessary for the normal func-
tion of the parathyroid glands, the metabolism of vita-
min D, and the sensitivity of tissues to the parathyroid
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hormone (PTH), while PTH itself stimulates magne-
sium reabsorption in the renal, magnesium absorption
in the ileum, and the release of magnesium from bone
tissue [115]. Many of magnesium’s actions have been
linked to a physiological calcium antagonist [39]. It
influences Ca2+ uptake, distribution, and content in
cardiovascular cells [66, 95]. A high Ca/Mg ratio pre-
disposes to arterial spasms and increases catechola-
mine release. Moreover, it is known that magnesium
is needed for the activation of Na/K-ATPase [91]. In
addition, at the cell level, magnesium modulates ion
transport by pumps, carriers, and channels (thus mo-
dulating signal transduction) and has a membrane-
stabilizing and protecting effect [4, 89].

Recent data from experimental and epidemiologi-
cal studies suggest an important effect of magnesium
deficiency in many diseases [36]. Disturbances of
magnesium’s metabolism have been reported in asso-
ciation with cardiovascular diseases (atherosclerosis,
hypertension, congestive heart failure, arrythmias,
and myocardial infarction [15]), obstetric conditions
(preeclampsia, eclampsia [29]), neurological diseases
(stroke, epilepsy [63, 107]) affective disorders [32,
64, 87] and alcohol withdrawal syndrome and delir-
ium tremens [23].

Magnesium and depression

Experimental data

Magnesium plays a significant role in the behavior of
animals. Hypomagnesemia produced anxiety- and
depressive-like behaviors. Data indicate the contribu-
tion of magnesium to affective disorders. Magnesium
depletion produces a reduction in offensive and an in-
crease in defensive behaviors in animals [41]. Addi-
tionally, magnesium depletion in mice leads to an in-
crease in anxiety and depression-like behavior, with
an increased preference for the dark compartment in
the light-dark test and a longer immobility time in the
forced swim test [64]. Besides this, depression- and
anxiety-related behavior in mice, produced by magne-
sium depletion, is reversed by antidepressant and anx-
iolytic drugs, respectively [96]. Furthermore, a corre-
lation of the intracellular magnesium levels with
behavior in mice was also found. Mice with low ery-
throcyte magnesium concentrations exhibited more
restless and more aggressive behavior under stressful
conditions than mice with high erythrocyte magne-
sium levels [35]. In the forced swim test, magnesium

administration reduces the immobility time in rodents
[9, 79, 81, 83] and enhances the action of antidepres-
sant drugs in mice [78, 84]. Moreover, magnesium,
similarly to imipramine, normalized the stress-induced
increase of immobility in mice [82]. In addition, the
anxiolytic-like activity of magnesium was observed in
the elevated plus-maze test. Magnesium treatment in-
creased the number of open arm entries in this test [79]
(Tab. 2). Magnesium also enhanced the anxiolytic-like
effects of classical benzodiazepines in this test [77].

Human data

Several clinical findings indicate the involvement of
magnesium in the pathophysiology and treatment of
depression. Disturbances in the magnesium levels in
depression were observed, although the data are in-
consistent throughout the study. In depressed patients
with a low serum magnesium level [3, 32, 87, 113],
no alteration or increase in the serum magnesium con-
centrations have been observed [18, 42, 109, 110,
112]. A correlation between low serum magnesium
levels and incidence of depressive symptoms was ob-
served. This correlation was observed in patients with
long-lasting and unipolar depression, but not those
with acute depression [12, 31, 32, 42, 48, 87]. The
other study showed a decrease in the total magnesium
plasma levels in depression and an increase in the
magnesium levels during recovery [21, 32]. Further-
more, in patients with mania [75] and rapid cycling
bipolar disorder [6], the mood-enhancing properties
of magnesium have also been reported. In addition, it
was found that supplementing lithium, benzodiaze-
pines, and neuroleptics with magnesium significantly
reduced the doses of these drugs [34] (Tab. 2).

Mechanism of antidepressant activity

Glutamate receptors

Similarly to conventional antidepressants and zinc,
magnesium increases BDNF expression, which may
be connected with the reduction of NMDA ionotropic
glutamate receptor function [24]. Magnesium is a po-
tent antagonist of the NMDA receptor complex [5];
thus, like organic and inorganic (zinc) NMDA recep-
tor antagonists, it may induce antidepressant actions
via this receptor complex [5]. The antidepressant-like
action of magnesium in the forced swim test is anta-
gonized by NMDA co-treatment (Fig. 3), while sub-
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active doses of magnesium were potentiated by sub-
active doses of the NMDA receptor complex antago-
nists (CGP 37849, L-701,324, D-cycloserine, MK-801)
[86] (Fig. 2).

Inhibition of GSK-3 enzyme

As was described above, inhibition of the GSK-3 en-
zyme is involved in the mechanisms of action of anti-

594 Pharmacological Reports, 2008, 60, 588–599

Fig. 2. Molecular mechanisms of antidepressant activity of magne-
sium. Plus signs represent excitatory/enhancing interactions, minus
signs represent inhibitory interactions. Three main targets, BDNF,
NMDA, and GSK-3 may be involved in the antidepressant action of
magnesium. Magnesium, like conventional antidepressants (AD),
may enhance the CREB/BDNF pathway via the serotonergic system.
Magnesium may also affect BDNF by inhibiting the activity of GSK-3.
In addition, magnesium directly inhibits the function of the NMDA
receptors

Fig. 3. Effect of NMDA co-treatment on magnesium-induced reduc-
tion in the immobility time in forced swim test (FST) in mice. Previ-
ously, we demonstrated that NMDA at a dose of 75 mg/kg ip antago-
nized the reduction in immobility time of magnesium at doses of 20
and 30 mg/kg in the FST in mice [86]. This figure demonstrates the ef-
fect of different doses of NMDA (50 and 100 mg/kg ip) on magnesium
(30 mg/kg) activity in FST in mice (The values represent mean ± SEM;
* p < 0.001 vs. control; # p < 0.01 vs. Mg). The experiment was per-
formed according to previously published conditions [86]. The data
together clearly indicate the dose response effect of NMDA on mag-
nesium activity in this test

Tab. 1. Involvement of zinc in the pathophysiology and treatment of
depression

Antidepressant activity of zinc

Zinc treatment Zinc supplementation

Rodents

Forced swim test (mice, rats) Active (acute
and chronic)

Improvement

Tail suspension test (mice) Active ND

Olfactory bulbectomy (rats) Active (acute
and chronic)

ND

Chronic unpredictable stress
(rats)

Active (chronic) Improvement

Chronic mild stress (rats) Active (chronic) ND

Human (unipolar depression)

HDRS, BDI ND Improvement

Zinc concentration

Serum Brain

Rodents (rats)
(chronic treatment)

Citalopram Increase Increase
(hippocampus)

Imipramine NA Increase
(hippocampus)

ECS NA Increase in synaptic
zinc (hippocampus)

Zinc Increase Increase in synaptic
zinc (hippocampus)

Human

Suicide ND NA

Unipolar depression Decrease ND

Postpartum depression Decrease ND

Antidepressant treatment:

Non effective treatment Decrease ND

Effective treatment Normalization ND

ND – no data; NA – no alterations; HDRS – Hamilton Depression Rat-
ing Scale; BDI – Beck Depression Inventory



depressant drugs [25, 40]. Since magnesium (like zinc
and lithium) is a potent inhibitor of this enzyme,
GSK-3 may well be a possible target of antidepressant
activity of this ion (Fig. 2).

Involvement of serotonergic system

We demonstrated the enhancement of antidepressant-
like activity by joint administration of magnesium and
imipramine [84], citalopram, and tianeptine, but not
with reboxetine, in the mouse FST [78]. Also, pCPA
induced serotonergic lesion and abolished magnesium
activity in FST [78]. These data suggest the involve-
ment of the serotonergic, rather than the noradrener-
gic, pathway in magnesium-induced antidepressant-
like activity in the FST. This biometal is also a cofac-
tor of tryptophan hydroxylase and is necessary for se-
rotonin receptor binding in vitro [41]. Additionally,
the direct enhancing effect of magnesium on 5-HT1A

serotonin receptor transmission was reported [10]
(Fig. 2).

Conclusion

Zinc and magnesium exhibit antidepressant-like
activity in a variety of tests and models in laboratory
animals and enhance the activity of conventional anti-
depressants. Clinical studies demonstrate the involve-
ment of zinc and magnesium in affective disorders
and an enhancement of the efficacy of pharmacother-
apy by these ions’ supplementation in these diseases.
All the available data indicate the importance of zinc
and magnesium homeostasis in psychopathology and
therapy of affective disorders.
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