Investigation of ligand binding mode at 5-HT₆ᵢ with the use of bioisosterism

Jakub Storoń¹, Dawid Warszycki¹, Justyna Kalinowska-Tłuciecka¹, Grzegorz Satała², Andrzej J. Bojarski²

¹Department of Medicinal Chemistry, Institute of Pharmacology Polish Academy of Sciences, 12 Smetana Street, 31-343 Cracow, Poland
²Department of Crystal Chemistry and Crystal Physics, Jagiellonian University Faculty of Chemistry, 3 R. Ingardena Street, 30-068 Cracow, Poland

Introduction
One of the most recently identified serotonin receptor subtypes – the 5-HT₆ᵢ receptor, localized practically only in the brain, is a very promising target for different new psychotropic drugs.[1,2,3] These receptors are supposed to be responsible mainly for motor control, memory and learning and its ligands can be used to treat cognitive and memory disorders such as Alzheimer’s disease[4,5]. So far, several thousand of ligands have been synthesized and their structural diversity makes consensus binding mode very difficult to be defined. Isosterism is the most common technique used by medicinal chemists to design and synthesize new series of compounds. An isosteric replacement can change compound activity, bioavailability, pharmacokinetics and metabolism. If isosteric replacement doesn't substantially change biological properties of a substance, it is called bioisosteric replacement. Besides altering compound properties, bioisosterism can be used to get insight into interactions of ligand with the receptor. By carefully planning isosteric replacements it is possible to probe certain regions of receptor binding pocket.

Concept

Crystallographic studies
Up to date crystal structures of several analysed compounds were obtained. Two distances in crystal structures were measured and compared: between cetral and peripheral aromatic moiety and between peripheral aromatic moiety and basic nitrogen atom.

Docking studies
In order to measure the position of a ligand in a binding pocket of 5-HT₆ᵢ, distances between ligand and different amino acid residues were calculated for 100 best scored complexes.

Conclusions
The goal of research was to investigate ligand-receptor interactions using designed and synthesized bioisosteric pairs. As a result, several amino acids from receptor binding pocket were highlighted as significant for binding ligands with high affinity for 5-HT₆ᵢ receptor. These amino acids are: D3.32, V3.33, C3.36, S5.43, T5.46, W6.48, F6.52 and V6.58. Especially, the phenylalanine cluster of F6.51 and F6.52 was selected as most important due to statistically closer position of potent ligands to these amino acids.

Additionally, crystal structures revealed significant differences in intermoiety distances between active and inactive compounds, being much shorter for ligands with high affinity.

Conducted research provided useful introduction to additional studies of the ligand-receptor interactions based on wider group of compounds. What more, developed methodology can be implemented to examine interactions of ligands with another receptors.

BIOISOSTERIC PAIRS

The research was financially supported from the project Innebracja Implicit Pathways Studies “Biological sciences for medicine” (co-financed by the European Social Fund within the Human Capital Operational Programme) and from Elitkadre (2014/15/B/ST5/00428). J. Bojarski is an employee of the Institute of Pharmacology Polish Academy of Sciences, 31-343 Cracow, Poland

Crystallographic research was conducted as part of a project financed by the European Regional Development Fund within Operational Programme Inno深夜Space (POIG.01.03.01-23-008/08).

References

SIFT representation

Docking studies

Receptor-Ligand Complexes

Representative complexes with one receptor conformation for active (1) and inactive (18) compounds. Aminoacid residues selected as important for active ligands interaction with receptor are marked in green. Aminoacid residues responsible for interaction with inactive compounds are marked in red.

Crystal structures

Crystal structures of 1 and 2. Noticable is different mutual orientation of both aromatic moieties.

Crystallographic model

Crystallization of 1 and 2. Noticable is different mutual orientation of both aromatic moieties.